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OCCURRENCE OF FREE CONVECTION IN A PLANE
LAYER IN THE PRESENCE OF A CHEMICAL
TRANSPORT REACTION

L. V. Sotnichenko and K, A. Shtessel! UDC 536.25

We consider the conditions for the occurrence of natural convection when a volatile compound
is transported through a gaseous phase as a result of a chemical reaction with a solid sub-
stance, We determine the variation of the critical Rayleigh number for the principal level of
instability as a function of the parameters of the process.

In an infinite plane horizontal gaseous layer with solid boundaries we are given thermal boundary condi-
tions of the first kind, On both of the boundaries there takes place a heterogeneous reversible exothermic
reaction of the type VAA +vgS == vgB; Aistheinitial gas; S, solid material of the wall; B, gaseous reaction
product; va, Vs, vB, stoichiometric coefficients. The mixture of gases in the layer may be considered
binary, since the reaction takes place in a heterogeneous manner and the vapor pressure of the solid ma-
terial is negligibly small. For T; > T, (Fig. 1), since the reaction is exothermic, the thermodynamic
equilibrium is shifted in such a way that the rate of the direct reaction, and consequently the gas flow rate
A, on surface I will be less than on surface II. For the reaction product B the situation is reversed. The
difference in concentrations gives rise to flows of the components caused by diffusion and convection. If
the solid material of the surface takes part in the reaction, there will be mass Stefan flow in the system.

In stationary conditions, the presence of Stefan flow is analogous to blowing into the system at a constant
velocity. For the given conditions, there may be thermal and concentration nonuniformities in density in
the mixture of gases. We write the concentration of the light component as PA/P = ¢, and the density of the

mixture as p = [a -+ (s —ps)cl, s, up being the molecular masses of the components, Following [1], we

P
RT
shall assume that the density of the mixture admits of a linear expansion with respect to the average values of
T and c, i.e., p=p,(1—B;T" —B,c’), where T' and ¢' are the deviations from the average values;

p_-—__l_ %\ . gz_l_(_a_p_\)
! 0o ( aT P,c’ 2 Po ac/P»T

We write the equations of free convection of the mixture, considering it incompressible [11. If should
be noted that v = v, + v, is the total hydrodynamic velocity; v is the convective velocity; v, is the Stefan veloc-
ity corresponding to the average density p,,.

Disregarding thermal diffusion and diffusive heat conduction in the heat and mass flows and assuming
that the nonuniformity in density is essential only in the expression for the lifting force (the Boussinesq ap-
proximation), we obtain a system of equations,

Institute of Chemical Physics, Moscow. Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 38,
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where v is the unit gravitational vector; a, thermal conductivity; D, diffusion coefficient.

@

Let us consider the boundary conditions for system (1). For the velocity and temperature z = 0, v = v,
T=Ty;z=h, v=vy,, T =T, The boundary conditions for the concentrations can be obtained in the quasi-
stationary approximation, assuming that the rate of the heterogeneous reaction with respect to a given com-

ponent is equal to the flow of this component to the surface [2].

The rate of the reverse reaction has the form

P
= evy .  Z —w —— [ A—F (1 — )",
4 dt RT & A RT | (1 —=a"

Bt = AT (——P )VA_l exp (— E, );
RT RT

_ _{ P \vB-! E
= A _—=_-
k O(RT) exp( RT)'

where

)

A;', Ag are preexponents; E;, E_ are the activation energies of the forward and reverse reactions, respec-

tively.
The total flow of component A is

. __P D d P,
a=2r @ @ TR ©
wherea =1 + (E'%&) ¢. ¢ is the average value of the concentration.
A

From (2) and (3) we obtain the boundary conditions:

_ dey voh . Y
z2=0 —[-—— : AD ki [Kff)o,v”.”"(l_ci)“’]"ﬁch
_ dey,  voh . Up
z=h — == T kK A —(1—e)?lT

We reduce Eqs. (1) and conditions (2)-(4) to dimensionless form, making use of the variables

h? T—T ¢c—¢
y U= vht P = P, g=———>% n= 2

= — t, = * ’
T : D Po‘VD Ty— Ta €y —Cy

z
h? h
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Fig. 2. Variation of Raf as a func-
tion of log s: 1) corresponds to the
case ¥i, 2 > 15 2) 1, ¥» ¥ 1; 3) cal-
culated for the transport reaction
Ni + 4CO == Ni(CO), when y, = 10?,

7

We obtain the system

2% 4 (uy)u=—Pryp+ PrAu -+ (Ra,0 + Rayi) 1,

divu = 0. )
5
08
e 6 = LAS,
5 T
an
fuds B =A
e + uy"n 1
with the boundéry conditions
{=0, wu=DPe 0=1,
P
L/ A { DM —e) + ol A—[1 —1(cs— ¢a) —co "B - € [v(cy—¢2) + Cz]} ;
dg €y —Cy Cy~—Cy
(6)
t=1, u=Pe 8=0,
P
A A RO [ (e — ) + el — (1 — 1 (e — ) — o] B+ S e+ Czl} .
ag Cy—Cy \ L3 —2Cy ]

Here Pr=v/D, L=a/D. From this point on, we shall assume that for the gases Pr = L =1, Ra; = g, (T, — T3 x
K3 D2, Ray = gPa(ci—co) B3/ D?, thermal Rayleigh number and its concentration analog; A = wvaah2t™/D, ratio
of the scales of the rate of the reverse reaction and the diffusion rate; Pe = vgh/D, Péclet number,

We consider the conditions for stationary equilibrium of the system. We obtain the equations
Pey0, = A8, Peyn, = An,.

The effect of Pe on the initial temperature and concentration profiles was investigated in [3], in which it was
shown that for Pe <1 the initial profile practically coincides with the linear.

In [4] an expression was obtained for v, in the presence of a heterogeneous reaction in stationary condi-
tions:
8D, 1 1 —vye3 BgVp Vg

Uy = — T where 8= ] — ——=, y=l——
vhoo Bz 1—17c LAY Va

Estimates indicate that for fypical transport reactions the value of Pe varies between 0,01 and 0.5. There-~
fore, the effect of the initial Stefan flow on the limit at which convection occurs may be disregarded, In this
case the conditions for stationary equilibrium have the form

d i
AG, =0, Any=0, 7Mg=0,=1—¢, Mo | -1
dg o,z

The conditions for the initial concentrations reduce to the form
¢} —c3 = A K "4 — (1 —cf) By,

0 0 2) .0 0,
Ty —Cy = -—Az[Ké )szA —(1 —CQ)VB]-

{7
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Fig. 3. Variation of the macrokinetic
factor ¢ as a function of the tempera-
ture drop At =t — t,: 1) vo = 10%; 2)

¥o = 1; 3) v = 107%; 4) variation of the
thermodynamic equilibrium concentra-
tion drop Ac® as a function of At,

Hereafter we shall assume that vy =2, vB =1, We introduce small perturbations in equilibrium and sub-

stitute them into the initial equations (5) and the conditions (6), linearizing with respect to the perturbations;
we then obtain the equations for linear perturbations:

Ju
FY i L Au+(Ra, 8 +Ran) v,
divu=0,
8)
PN (
— -+ uy6, = A9,
P VY
o
=1 = A
5 UV =A4n
and the boundary conditions:
=0, u=0, 0=0, 2L _pgy
dg
dn (9
:=], =0, 9=0,—‘=_B ’
£ u dr 2"
where B, =4, (2K} + 1], By=A12KP c2 + 11
Eliminating the pressure in (8) and setting the perturbations proportional to exp[—At + i(kg + ko))
for A = 0, we obtain a boundary-value problem for neutral perturbations:
ulV — 2% 4 k'u = (Ray8 + Rayn) &2, (10)

O — 20 = —u, Nl—ky = —u,

Here K = kf + k%,wherek is the wave number. The boundary conditions correspond to the conditions (9).
System (10) can be solved by the Bubnov—Galerkin method (5]. The perturbation in the rate is given in the

form u = £%(1—¢). As a result, we obtain an expression for the Rayleigh number of the principal level of
instability in the form

Ra,=Ra?/(1+s—’i), 1)
\ Iz

where Raf = Lk"/li is the solution of the problem for purely thermal convection with solid isothermal bounda-
ries, in which

L = k' -+ 24k% 4-504; Iy = A+ 1260k (cifs + ¢of2);
(1—chk
e ( shk 2 :
a=2k"% 1 24k78 b=12k"% f,=(12+4 k) (chk —1)—6kshk;
fo= (12 + k%) shk — 6k (chk — 1};
c; = [(@By + by (kshk + By chk) — By (aB, + b)i z7*;

I, = A+ 1260k (Gof s + cufa)s € = —

Cy = —G.
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The dimensionless complex s represents the ratio of the concentration Rayleigh number to the thermal

B Acf
B, AT

yields the minimum critical number Raf, which depends on the dimensionless parameters s, By, and B,, To
analyze this relation, we determine the initial concentration drop ac® from conditions (7). The solution of
system (7) is carried out by means of a linear expansion in a Taylor's series with respect to the thermodyna-
mic equilibrium value of the concentrations cf and cf.

Rayleigh number: s = The minimum of the expression (11) with respect to the wave number k

As is known,

Kp = I—¢ = exp [—
c? )

AHo - AS®

RT R ] ’

where AH® is the variation in enthalpy or the thermal effect of the reaction; A8® is the variation in entropy as
a result of the reaction. Hence

S VI+H4K, —1
- 2K, ‘
The concentration drop has the form

12
Ac® = @AY, ¢2)

where Ac® = c?—¢! is the equilibrium concentration drop; ¢ =( 1+ 51—— + 21

V1 V2
macrokinetic regions in which the process takes place; y = AVYI + 4K is a dimensionless parameter charac-
terizing the ratios of the scales of the rate of a reversible reaction to the diffusion rate. It should be noted
that the parameters y and B, from the boundary conditions (9), are practically equal for all values of Kp, and
therefore the boundary conditions for the perturbations in concentration can be written in the form

-—1
) is a factor determining the

dn | dn 13)
—— —_— 'n, D — = -
ax o i7U) at L Y21
We introduce the dimensionless temperature ¢= -%%1 (T —Ty) 121, where T, = AHY%AS is the value of
[

the temperature at which Kp =1, Expressing T in terms of t, we obtain

Kp@ =exp[—t(1+B1)7'], v=nf(®),
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where

_ 2V5 Avam? E_ )
I > B (— RT, )’
E ¢ R
f 14+ 4K, () ex _; = .
1O =VIFIKG 0 e 1o ) P as
d AC" 18] -~ \~! . A ‘mpe
The parameter s= — , Wwhere d =< —Cy ) . We consider the limits of variation of s.
181 At ’ Mp—Wa ]

In the limiting case ¥, v, > 1 the boundary conditions (13) become conditions of the first kind. The concentra-
tion drop is equal to the thermodynamic equilibrium concentration drop, and th _g)rocess takes place in the
diffusion region. The maximum value of s is found from the conditions Ac’ 1, at = Aty. The quantity
Aty means the temperature width of the zone of reversibility of the reaction and is determmed by the tempera-
ture dependence of the equilibrium constant. This quantity may be calculated from the condition At, = o

ded |-
df o’

where a =

From the estimates for typical transport reactions, smax =~ 20. For v, Ys <1 the

boundary conditions (13) correspond to the absence of a concentration flow (the analog of thermal adiabatic
conditions). The process takes place in the kinetic region, Ac? <Ac’. For any At, d, I8 |, the value of s <1,
It should be noted that for small values of At, for all reactions, s <1, and in the limit as At — 0, As—0.

Figure 2 shows the variation of Ra:‘ as a function of the parameters s, v;, and v;. The number Raf
decreases sharply as s increases, and this reflects the relative contribution of the concentration convec-
tion. With decreasing v;, 7, the values of which determine the character of the boundary conditions, Raf
also decreases, a fact which was noted for purely thermal convection and boundary conditions of the third
kind [5].

Thus, taking account of the heterogeneous reversible exothermic reaction leads to a considerable de-
crease (as much as 95%) in the threshold of convective instability and a widening of the boundaries of the in-
fluence of the concentration convection.

As an example, let us consider the specific transport reaction Ni + 4CO ==Ni(CO),. Corresponding to
this reactlon we have the kinetic equatlon (2) when vp =2, vg =1, |AH?| = 40 keal - mole~!; JaS®| =100 cal-
mole ™! -deg _ = 52 keal * mole™ [6, 7]. The quantity ¥, can vary within wide limits essentially as a result
of the quantlty A;, which characterizes react1v1ty of the surface, andthe system dimension h. The interval of
variation is vy = 1072-10%,

Figure 3 shows the variation of ¢ and ac? (4) as functions of the temperature drop At = t; ~t,. The value
of t; was fixed at t; = +5, and t; varied from —10 to +5,

As can be seen from Fig. 2, when 7y < 1, the process takes place only in the kinetic region. As v, in-
creases, there is a shift in the diffusion region with respect to At, and the larger the value of v,, the sooner
this shift occurs. The temperature width of the zone of reversibility is At« = 10 (Ac® ~ 1), The limits of
variation of s with At for the indicated cases with respect to v, are shown in Fig. 4,

If the process takes place in the kinetic region, i.e., vy << 1, and even for small values of At, the quantity
s € 1, which corresponds to the upper segment of curve 2 in Fig. 2. If the process can take place both in the
kinetic region and in the diffusion region (y, » 1), then the variation of Ra.l* as a function of s takes the
form of curve 3 in Fig, 2.

Thus, we have obtained an expression for the critical Rayleigh number of the principal level of in-
stability as a function of the dimensionless parameters of the process s, ¥;, ¥3. The parameter s describes
the relative contribution of the concentration convection to the picture of the general instability of the mixture,
while vy and v, reflect the nature of the boundary conditions with respect to concentration. As s increases,
the conditions for the occurrence of convection become much less severe, The critical value of Raf can be
reduced by 90-95% if the process takes place in the diffusion region and the temperature drop is equal to the
thermodynamically optimal drop At, at which the concentration drop is maximum (Ac® = AG® = 1),

A decrease in v; and v, also brings a decrease of 10-20% in Raf, However, for small values of y; and
7Y, the process can take place only in the kinetic region, the value of 8 < 1, and therefore the total decrease in
Rat is small. For a specific transport reaction we have shown the regions in which the process takes place,
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the limits of variation of the parameter s for different values of y; and y,, and also the variation of Ra} as a
function of these parameters,
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MOTION OF GAS BUBBLES IN AN INFINITE VOLUME
OF STATIONARY LIQUID IN A
GRAVITATIONAL FIELD

V. N. Kuchkin : UDC 541,24:532.5

The resisting forces, velocities, and shape parameters of gas bubbles rising in an infinite
volume of liquid are found analytically.

The laws of motion of gas bubbles relative to a liquid are fundamental for the construction of a theory of
two-phase media [1]. Ordinarily in the theoretical description of the laws of motion of bubbles in a liquid it is
agsumed that the bubbles are spheres of radius @ and that their motion in the liquid is potential and satisfies
the boundary~value problem [2]

Ap=0; u=grade¢; «,=0 at r=a u—->U a5 r— oo. 48

The solution of problem (1) determines the behavior of the normal u, and tangential u; velocity compo-
nents in the neighborhood of a bubble:

=U[ 1~(—‘—;—)3]sinn; Uy =—U[1+—;—(—j—)3]cosn. @)

and the pressure distribution on the surface of a bubble is described by Bernoulli's equation
L [t2],—a + pg = const 3
2 nir=4 Py = * ( )

Equations (2) and (3) are solved for gas bubbles satisfying the pressure balance condition

20
Po = Pp— R 4)

It follows from the condition of static equilibrium (4) that the bubbles can be spherical either if they are
very small, when the second term is large, or are stationary with respect to the liquid. In other cases the
nonuniformity of the pressure distribution over the surface of a bubble described by Eqs. (2) and (3) must lead
to its deformation into an ellipsoid flattened in the direction of motion [2], and to an increase in the area of the

interface and consequently to an increase in the dissipative forces as the bubble moves through a viscous
liquid.

Thus, to find the laws of motion of a gas bubble it is necessary to solve the problem of the flow of an
ellipsoidal bubble and the effect of its velocity with respect to the liquid on its shape.

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 38, No, 1, pp.107-111, January, 1980, Original
article submitted January 22, 1979,
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